Computationally Efficient Neural Field Dynamics
نویسندگان
چکیده
We propose a modification of the dynamic neural field model of Amari [1], aiming at reducing the simulation effort by employing spaceand frequency representations of the dynamic state in parallel. Additionally, we show how the correct treatment of boundary conditions (wraparound, zero-padding) can be ensured, which is of particular importance for, e.g., vision processing. We present theoretical predictions as well as measurements of the performance differences between original and modified dynamics. In addition, we show analytically that key properties of the original model are retained by the modified version. This allows us to deduce simple conditions for the applicability and the computational advantage of the proposed model in any given application scenario.
منابع مشابه
Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملCharacterizing Deep Brain Stimulation effects in computationally efficient neural network models
BACKGROUND Recent studies on the medical treatment of Parkinson's disease (PD) led to the introduction of the so called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently joined to dopaminergic drugs administration, replaces ...
متن کاملSystem Dynamics and Artificial Neural Network Integration: A Tool to Valuate the Level of Job Satisfaction in Services
Job Satisfaction (JS) plays important role as a competitive advantage in organizations especially in helth industry. Recruitment and retention of human resources are persistent problems associated with this field. Most of the researchs have focused on the job satisfaction factors and few of researches have noticed about its effects on productivity. However, little researchs have focused on the ...
متن کاملA New Wave Neural Network Dynamics for Planning Safe Paths of Autonomous Objects in a Dynamically Changing World
We consider the problem of finding a safe path for a robot/manipulator in a dynamic environment and propose a novel neural network model for solving this task. The network has discrete time-dynamics, is locallyconnected, and is, hence, computationally efficient. No preliminary information about the current world status is required for the planning process. Path generation is performed via the n...
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کامل